Algebra

Si chiama legge di composizione interna in un insieme A, un'applicazione di A×A→A, dove con A×A si intende il prodotto cartesiano di A per A. In altre parole una legge di composizione interna in un insieme A è una legge che associa ad ogni coppia ordinata di elementi di A un elemento di A stesso. Si dice che l'insieme A è dotato di struttura algebrica se in A sono definite una o più leggi di composizione.

Per esempio con A(+,*) si indicherà la struttura algebrica con elementi in A e le due leggi di composizione interne somma e prodotto. Con Z8(⊕,⊗), si indicherà la struttura algebrica definita nell'insieme {0,1 2,3,4,5,6,7} e con le due operazioni di somma e prodotto in modulo 8.



Proprietà delle leggi di composizione interne

proprietà associativa: ∀a,b,c∈A → (a∗b)∗c = a∗(b∗c)

proprietà commutativa: ∀a,b∈A → a∗b = b∗a

esistenza elemento neutro e: ∃e:∀a∈A → e∗a = a∗e = a. L' elemento neutro rispetto al prodotto è uno, rispetto alla somma lo zero

esistenza simmetrico: ∀a∈A, ∃as∈A: a∗as=as∗a=e. Il simmetrico rispetto alla somma si chiama opposto, rispetto al prodotto reciproco.

proprietà distributiva del prodotto rispetto alla somma: ∀a,b,c∈A → a*(b+c)=(a*b)+(a*c), (b+c)*a=(b*a)+(c*a)

legge anullamento del prodotto: se a*b=0, a=0 V b=0

unicità dell'elemento neutro: se A possiede un elemento neutro, esso è unico. Supponiamo per assurdo che esistano due elementi neutri e ed e' distinti. Essendo e elemento neutro avremo: e*e' = e'*e = e' Inoltre se e' è elemento neutro avremo: e'*e = e*e' = e per cui dovrà essere e = e' Pertanto è impossibile che esistano due elementi neutri tra loro distinti



Strutture algebriche

Monoide: è dotato da un'unica legge di composizione interna avente la proprietà associativa

Gruppo: è un monoide dotato di elemento neutro e simmetrico per ogni elemento

Gruppo commutativo: è un gruppo in cui la legge di composizione interna è commutativa

Anello: è dotato di due leggi di composizione interne, rispetto alla prima legge di composizione è un gruppo commutativo, la seconda legge è dotata di proprietà associativa, possiede elemento neutro, ed è distributiva rispetto alla prima

Corpo: è un anello che ha simmetrico per ogni elemento escluso l'elemento neutro della prima legge di composizione

Campo: corpo commutativo



Relazione tra esistenza del reciproco e legge anullamento del prodotto

Dimostreremo che queste due proprietà sono collegate tra di loro ovvero se esiste reciproco per ogni elemento allora vale la legge di anullamento del prodotto. Le due leggi di composizione interne sono indicate come somma e prodotto con i rispettivi elementi neutri 0 e 1. Supponiamo che a*b=0 e che ci sia reciproco per ogni elemento, quindi se a≠0 allora esiste a' tale che a*a' = a'*a = 1, moltiplichiamo entrambi i membri dell'uguaglianza a*b=0 per a': a'*a*b=0*a' → 1*b=0 → b=0 Quindi, c'è una stretta relazione tra l'esistenza del reciproco e la legge di anullamento del prodotto.



Cosa succede quando n è numero primo


+0123456
00123456
11234560
22345601
33456012
44560123
55601234
66012345
*0123456
00000000
10123456
20246135
30362514
40415263
50531642
60654321

Analizzando la tabella della somma modulo 7 si può notare che 1 è opposto di 6, 2 è opposto di 5, 3 è opposto di 4, quindi ogni elemento ha l'opposto ovvero. Rispetto alla somma, la struttura algebrica delle classi di resti modulo n è gruppo abeliano.

Quando si considera il prodotto, la struttura algebrica delle classi di resti modulo n dipende dal fatto che n sia o no un numero primo.

Dall'analisi della tabella del prodotto modulo 7 si può notare che 1 è reciproco di se stesso, 2 è reciproco di 4, 3 è reciproco di 5, 6 è reciproco di se stesso, quindi ogni elemento ha reciproco.



-0123456
00654321
11065432
22106543
33210654
44321065
55432106
66543210
:0123456
0/000000
1/145236
2/213465
3/351624
4/426153
5/564312
6/632541

Quando n è numero primo, le classi di resti modulo n assumono la struttura di campo.

Analizziamo anche le tabelle della sottrazione e della divisione modulo 7.

Per sottrarre un numero, si può pensare di sommare l'opposto di quel numero.

Notiamo pure che, per dare un senso alla divisione abbiamo usato l'operazione modulo 7 (7 è un numero primo) e quindi abbiamo pensato la divisione per un numero come il prodotto per il reciproco del numero stesso.



*012345678910
000000000000
1012345678910
2024681013579
3036914710258
4048159261037
5051049382716
6061728394105
7073106295184
8085210741963
9097531108642
10010987654321

Dall'analisi della tabella del prodotto in Z11, si può notare che 2 e 6, 3 e 4, 5 e 9, 7 e 8, sono uno reciprco dell'altro, mentre 10 è reciproco di se stesso, quindi ogni elemento diverso da zero ha reciproco.

Si osservi che, il numero zero è presente solo nella seconda riga e nella seconda colonna, ciò significa che il prodotto di due numeri diversi dallo zero è ancora diverso da zero.

In Z11 quindi, oltre all'esistenza del reciproco, vale la legge di anullamento del prodotto.

Se n non è numero primo la struttura è di anello, pertanto non esiste reciproco e non vale la legge di anullamento del prodotto, ovvero il prodotto di due elementi non nulli può essere nullo. Z12, Z8, sono quindi anelli.



*01234567891011
0000000000000
101234567891011
202468100246810
3036903690369
4048048048048
505103816114927
6060606060606
707294116183105
8084084084084
9096309630963
1001086420108642
1101110987654321

Dall'analisi della tabella del prodotto in Z12, si può notare che non c'è reciproco per ogni elemento, solamente i numeri 5, 7, 11 lo hanno (sono reciproci di se stessi), questo appunto perchè 12 non è numero primo.

Si può notare anche che la tabella contiene degli zeri infatti, per esempio 3⊗4=0, questo a conferma che esistenza del reciproco, e legge di anullamento del prodotto sono collegati.

In un anello quindi si possono definire le operazioni di somma, sottrazione e moltiplicazione.

In un campo si può definire pure la divisione.

In un campo infatti esiste reciproco per ogni elemento e quindi la divisione per un numero può essere pensata come prodotto per il reciproco del numero stesso.